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1 Chambers and chamber walks

If G is a Coxeter group, we have associated to it a hyperplane arrangement {H : sy € G}.
We can look at R™ \ | J H, which is a disjoint union of chambers. Their closures are called
Weyl chambers.

In this lecture, we will be using some arguments that appeal to intuition in 3-dimensions
but in fact generalize to n dimensions. For a more formal treatment, check the book
Reflection Groups and Cozeter Groups by James Humphreys.

1.1 Normal vectors to chamber walls

Pick a chamber C', where the walls are hyperplanes H;. Each chamber has a normal vector
«;, where we can choose «; to point to the inside the chamber. This is the condition that
(e, v) > 0 for every vector v € C. If we let H, to be the hyperplane normal to v, we get
that all the «a; are on one side of H,,.

There exists some cross-section of the space such that any two walls of C' look like two
intersecting lines, intersecting at the origin. In fact, this is true for any number of walls of a
chamber. We then get a 2-dimensional picture of how the chamber looks on this slice. The
angle between any two hyperplanes must be 90 degrees or less, so we get that (o, ;) < 0.

Definition 1.1. A set of vectors v; is RT independent if any positive linear combination
of them is nonzero.

The o; are then R™ independent. We can now make use of the following fact.

Lemma 1.1. If aq,...,a are RT independent and {(c;, oj) < 0, then the oy are R-linearly
independent.

Proof. Suppose that ) ¢;a; = 0 with not all ¢; = 0. We must have some ¢; > 0 and some
¢; < 0. Moving the negative terms to the other side, we get

Z CiO; = Z djOéj



with ¢;,d; > 0 and ¢ # j. Call this quantity w. Then

(w,w) = Z cid; (o, a5) < 0.
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Since (w,w) > 0 for any inner product and vector w, we get (w,w) 0, which means w = 0.
This is a contradiction. O

Corollary 1.1. The normal vectors «; are linearly independent; i.e. C is simplicial (or
degenerate simplicial).

1.2 Coxeter group action on chambers

The group G acts on the hyperplane arrangement, so we want to show that it acts on the
chambers.

Definition 1.2. Let G be a Coxeter group and C a chamber. The simple reflections s;
are the reflections sg,, where H; are the hyperplanes that are the walls of C.

For a choice of C, let G C G be the subgroup generated by the simple reflections.
Proposition 1.1. |JG -C = R".

Proof. This is a finite union of closed sets, so it is closed. It is also nonempty. We want to
show that this is open. It suffices to show that it contains a neighborhood of every v € C.
If v is in the interior of C, we are done. If it is on a wall, take a chamber with dimension
n — 1 on this hyperplane; by induction, we can find a neighborhood on the plane, and we
can use G to get a neighborhood of v. O

Corollary 1.2. G = G.

Proof. For each sy € G, there is some ¢ € G such that sy = gs; = gsig 1 € G. So the
simple reflections s; generate G. O

Example 1.1. Consider S, O R", where (i j) = sy, where H = {z e R" : ; = x;}.
Consider C = {x € R" :x1 > x9 > --- > x,}; this is a chamber. The walls of C are
{r € R" : z; = x;41} for each i. The simple reflections are (i (i + 1)). The chambers
are wC for w € S,.

Example 1.2. Consider B,, © R"™. The reflecting hyperplanes are {r € R" : z; = z;}
and {x e R":2; =0}. Let C = {z € R" : 21 > -+ > x,, > 0}. The walls are of the form
{z €eR" : 2 = xj41} and {z € R" : z,, = 0}. The simple reflections are (i (i+1)), like with

Sy, but we also have the reflection (7).



1.3 Chamber walks

Pick a chamber C, and look at one of its walls, corresponding to the reflection s;,. Look at
s;; C, an adjacent chamber where we have reflected across the wall. We can keep reflecting,
by looking at s;, (si,C). Make sure you check this; when you reflect over a wall, the element
gets multiplied on the right, not the left. So a chamber walk from C' to wC will correspond
to a factorization w = s;, - - - 5;, into simple reflections.

Define {(w) to be the minimum ¢ such that w = s;, - - - s,; this is the minimum length
of a chamber walk from C to wC. Every simple reflection will make the walk cross over a
hyperplane. So ¢(w) > the number of hyperplanes H separating C' from wC.

Example 1.3. Let we S, and C ={x € R" : 2y > --- > 2z, }. Then
w - (a;l, NN ,l’n) = (azwﬂ(l), vos 737w*1(n))'

So in the case of .S, the number of hyperplanes H separating C' from wC' is the number
of inversions of w1 (or of w).



