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1 Chambers and chamber walks

If G is a Coxeter group, we have associated to it a hyperplane arrangement {H : sH ∈ G}.
We can look at Rn \

⋃
H, which is a disjoint union of chambers. Their closures are called

Weyl chambers.
In this lecture, we will be using some arguments that appeal to intuition in 3-dimensions

but in fact generalize to n dimensions. For a more formal treatment, check the book
Reflection Groups and Coxeter Groups by James Humphreys.

1.1 Normal vectors to chamber walls

Pick a chamber C, where the walls are hyperplanes Hi. Each chamber has a normal vector
αi, where we can choose αi to point to the inside the chamber. This is the condition that
〈αi, v〉 ≥ 0 for every vector v ∈ C. If we let Hv to be the hyperplane normal to v, we get
that all the αi are on one side of Hv.

There exists some cross-section of the space such that any two walls of C look like two
intersecting lines, intersecting at the origin. In fact, this is true for any number of walls of a
chamber. We then get a 2-dimensional picture of how the chamber looks on this slice. The
angle between any two hyperplanes must be 90 degrees or less, so we get that 〈αi, αj〉 ≤ 0.

Definition 1.1. A set of vectors vi is R+ independent if any positive linear combination
of them is nonzero.

The αi are then R+ independent. We can now make use of the following fact.

Lemma 1.1. If α1, . . . , αk are R+ independent and 〈αi, αj〉 ≤ 0, then the αi are R-linearly
independent.

Proof. Suppose that
∑
ciαi = 0 with not all ci = 0. We must have some ci > 0 and some

ci < 0. Moving the negative terms to the other side, we get∑
ciαi =

∑
djαj
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with ci, dj > 0 and i 6= j. Call this quantity w. Then

〈w,w〉 =
∑
i,j

cidj︸︷︷︸
>0

〈αi, αj〉︸ ︷︷ ︸
≤0

≤ 0.

Since 〈w,w〉 ≥ 0 for any inner product and vector w, we get 〈w,w〉 0, which means w = 0.
This is a contradiction.

Corollary 1.1. The normal vectors αi are linearly independent; i.e. C is simplicial (or
degenerate simplicial).

1.2 Coxeter group action on chambers

The group G acts on the hyperplane arrangement, so we want to show that it acts on the
chambers.

Definition 1.2. Let G be a Coxeter group and C a chamber. The simple reflections si
are the reflections sHi , where Hi are the hyperplanes that are the walls of C.

For a choice of C, let G̃ ⊆ G be the subgroup generated by the simple reflections.

Proposition 1.1.
⋃
G̃ · C = Rn.

Proof. This is a finite union of closed sets, so it is closed. It is also nonempty. We want to
show that this is open. It suffices to show that it contains a neighborhood of every v ∈ C.
If v is in the interior of C, we are done. If it is on a wall, take a chamber with dimension
n− 1 on this hyperplane; by induction, we can find a neighborhood on the plane, and we
can use G̃ to get a neighborhood of v.

Corollary 1.2. G̃ = G.

Proof. For each sH ∈ G, there is some g ∈ G̃ such that sH = gsi := gsig
−1 ∈ G̃. So the

simple reflections si generate G.

Example 1.1. Consider Sn � Rn, where (i j) = sH , where H = {x ∈ Rn : xi = xj}.
Consider C = {x ∈ Rn : x1 > x2 > · · · > xn}; this is a chamber. The walls of C are
{x ∈ Rn : xi = xi+1} for each i. The simple reflections are (i (i + 1)). The chambers
are wC for w ∈ Sn.

Example 1.2. Consider Bn � Rn. The reflecting hyperplanes are {x ∈ Rn : xi = xj}
and {x ∈ Rn : xi = 0}. Let C = {x ∈ Rn : x1 > · · · > xn > 0}. The walls are of the form
{x ∈ Rn : xi = xi+1} and {x ∈ Rn : xn = 0}. The simple reflections are (i (i+1)), like with
Sn, but we also have the reflection (̄i).
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1.3 Chamber walks

Pick a chamber C, and look at one of its walls, corresponding to the reflection si1 . Look at
si1C, an adjacent chamber where we have reflected across the wall. We can keep reflecting,
by looking at si1(si2C). Make sure you check this; when you reflect over a wall, the element
gets multiplied on the right, not the left. So a chamber walk from C to wC will correspond
to a factorization w = si1 · · · si` into simple reflections.

Define `(w) to be the minimum ` such that w = si1 · · · si` ; this is the minimum length
of a chamber walk from C to wC. Every simple reflection will make the walk cross over a
hyperplane. So `(w) ≥ the number of hyperplanes H separating C from wC.

Example 1.3. Let w ∈ Sn and C = {x ∈ Rn : x1 > · · · > xn}. Then

w · (x1, . . . , xn) = (xw−1(1), . . . , xw−1(n)).

So in the case of Sn, the number of hyperplanes H separating C from wC is the number
of inversions of w−1 (or of w).
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